SQUARE FUNCTION DESCRIBES THE DEPENDENCE OF THE ACTIVATION ENERGY OF VISCOUS FLOW ON TEMPERATURE FOR OVALBUMIN IN AQUEOUS SOLUTIONS

K. MONKOS

Medical University of Silesia, Zabrze, Poland

The activation energy of viscous flow ΔE is usually defined as a minimum energy required for a molecule to escape the influence of its neighbouring molecules. In many cases, it is obtained from the slope of the line that represents the dependence of $\ln \eta$ versus T^{-1} (η is a viscosity and T – the absolute temperature of the liquid). More strict definition, which allows calculation of ΔE at the individual temperature is: $\Delta E = R[d\ln \eta/d(T^{-1})]$, where R is the gas constant. The viscosity-temperature dependence for globular proteins solutions – in a wide range of temperatures – can be precisely described by a modified Arrhenius formula (Monkos, 1996, *Int. J. Biol. Macromol.*,18, 61), which leads to the following relationship between the activation energy of viscous flow of a solution $\Delta E(c,T)$ and T:

$$\Delta E(c,T) = \Delta E_s(c) - RD_s(c)T^2$$

 $\Delta E_s(c)$ and $D_s(c)$ denote the activation energy at T=0 and the rate of decreasing of the activation energy with increasing temperature, respectively. Both quantities – at fixed concentration c – can be obtained from a modified Arrhenius equation. The viscosity measurements for ovalbumin aqueous solutions were performed using an Ubbelohde-type capillary microviscometer over a wide range of concentrations and at temperatures ranging from 5°C to 55°C in 5°C intervals. A modified Arrhenius formula and the above equation were then applied to the calculation of $\Delta E(c,T)$. The activation energy of a solution is a superposition of the activation energy of water $\Delta E_w(T)$ and dissolved proteins $\Delta E_p(T)$. As appears, $\Delta E_p(T)$ fulfils exactly the same equation as the above one:

$$\Delta E_p(T) = \Delta E_p - RD_p T^2$$

and, for ovalbumin, $\Delta E_p = (8.49 \pm 0.46) \times 10^7$ J/mol and $D_p = (86.4 \pm 5.4)$ K⁻¹.